A new article from our lab was published today in Journal of Neuroscience. It is called ‘Bilateral tactile input patterns decoded at comparable levels but different time scales in neocortical neurons’ and investigates to which extent individual neurons of the primary somatosensory can decode contralateral and ipsilateral input.
We demonstrate that the spiking activity of single neocortical neurons in the somatosensory cortex of the rat can be used to decode patterned tactile stimuli delivered to the distal ventral skin of the second forepaw digits on both sides of the body. Even though comparable levels of decoding of the tactile input was achieved faster for contralateral input, given sufficient integration time each neuron was found to decode ipsilateral input with a comparable level of accuracy. Given that the neocortical neurons could decode ipsilateral inputs with such small differences between the patterns suggests that S1 cortex has access to very precise information about ipsilateral events. The findings shed new light on possible network mechanisms underlying bimanual haptic processing.